In the name of Allah, Most Gracious, Most Merciful

Tell Me About Islam

Tell me about Islam

The origins of life

If we are to believe certain researchers and their statements concerning the phenomenon of life, there are no more secrets left to discover today The origins of life no longer form the subject of laboratory investigation, stated an eminent specialist in molecular biology in 1972. Always assuming these words still carry a meaning, we may conclude that life does not contain any facts we do not know. In reality, however, the situation is quite different, and there are plenty of mysteries that still surround the origins of life.

Ingenious experiments have for many years been repeatedly performed by biochemists and biophysicians in an attempt to prove the possibility of spontaneously obtaining infinite quantities of certain chemical compounds found in cells that are structurally highly complex. The scientists in question are of the opinion that due to favourable physical influences, the compounds were able spontaneously to combine together in an organized fashion, and by uniting, were able to produce the fantastic complex we call the cell, or even more rudimentary living organisms.

A statement such as this is tantamount to saying that the possibility of spontaneously forming steel particles from iron ore and coal at high temperature could have led to the construction of the Eiffel Tower through a series of happy coincidences that assembled the materials in proper order. Even then, this comparison is very weak, for the actual structural complexity of an elementary living organism is much more complex than the structure of the Eiffel Tower, considered in 1889 to be a triumph of metal construction.

Those who ardently defend the role of chance base their opinions on experiments of this kind, which claim to reproduce the possible origins of life. They repeat the views of Miller, who in 1955 induced the formation of complex chemical compounds; such as the amino acids present in cellular proteins, using electric sparks in an atmosphere of gas composed of steam, methane, ammonia and hydrogen.

Needless to say, such experiments do not provide any explanation for the organization of the components; nor do we have any idea whether this favourably composed gas really existed in the earth’s atmosphere two or three billion years ago. A theory cannot be built on unknown facts such as these. Even if a gas of this kind did exist in the earth’s atmosphere; even if certain physical conditions did trigger high-powered electrical phenomena; even if complex organic chemical compounds had formed as a result of this fortunate combination of circumstances, there is nothing to prove that they could have induced the creation of living matter.

The determining factor for this phenomenon remains unknown. Some researchers admit that there is an enigma in this. Others point to chance a convenient loophole that excuses them from acknowledging their ignorance. We shall come back later to the reasons why it is impossible to explain the phenomenon of life in terms such as these.

We must indeed turn to disciplines other than biochemistry to find the first clues to the problem, and in particular we must look toward paleontology. Certain prehistoric animals and vegetal were not totally destroyed after their death. Their remains lay buried in sedimentary terranes, protected thereby from disintegration, and thus providing us with vestiges of these prehistoric life forms. The state in which the vestiges are found sometimes allows us ‘’to draw certain conclusions concerning the morphology and age of these once living beings (The material studied by Paleontology is limited to the bones and teeth). It is in fact possible to gain an immediate idea of their age by establishing the date of the terranes.

This can be done by various methods, in particular by radioactive measurements (radio chronology). For terranes that are geologically less ancient, carbon 14 tests are used, while strontium and rubidium tests are employed for older terranes. Having carried out these tests, experts can then determine the age of the specimens under investigation.

Tests such as these lead us to think that living beings existed in a unicellular state roughly one billion years ago (The earth is 4.5 billion years old). Although it cannot be stated for sure, other forms may have existed before them. P. Grasse, in his book entitled `Evolution du Vivant’ (The Evolution of Living Organisms) (Published by Albin Michel, Paris, 1973), mentions the discovery of vestiges of much older organisms: for example, the existence of organized life forms roughly 3.2 billion years ago in the rock formations of the Transvaal. These forms could possibly represent tiny bacteria, smaller than 1 / 10,000 millimeters, as well as particles of amino acids. These organisms may have employed amino acids, or possibly proteins contained in the sea... Other microorganisms may also have been present in the sediments, such as cyanophilous algae containing chlorophyll.

The latter is a basic agent in photosynthesis, a process by which complex organic compounds are formed from simple components through the effect of light. Fossilized vegetation resembling algae and filamentous bacteria have been found in more recent rock formations (2.3 billion years old) near the shores of Lake Superior in Canada. The bacteria and certain algae displayed an extremely simple structure, without the well known differentiated elements of the cells. Similar samples dating back roughly one billion years have been discovered in rock formations in Central Australia.

This stage probably gave way to a period in which algae of a different kind displayed a genuine cell structure, with a nucleus and chromosomes containing molecules of deoxyribonucleic acid, D.N.A for short. Many facts about these algae remain unknown, however. The pluricellular stage was to follow, but “in the animal kingdom, between uni and pluricellular forms, there was still a hiatus”. Two basic notions must be mentioned immediately:

a) The aquatic origins of primitive organisms;
b) The emergence of a growing complexity, passing from one form to another combined with the appearance of new organisms.
This growing complexity is ever present throughout evolution: We find similar fossilized vegetation at a much more `recent’ period, 500 million years ago. We cannot be certain, of course, that today’s bacteria are identical to those said to have appeared on earth as the first living organisms. They may have evolved since then, although bacteria such as Escherichia Coli have indeed remained the same for 250 million years.

Whatever the answer, the origins of life definitely appear to be aquatic. According to today’s thinking, it is impossible to conceive of life without water. Any search for traces of life on other. planets begins with the question: Has water been present there? On the earth’s surface, the combination of certain conditions including the presence of water was required for life to exist at all.

The complexity of living matter in those very first organisms is not likely to have been as great as it is in today’s cells. Nevertheless, as P. Grasse points out: “In order for life to exist, there must be a production and exchange of energy. This is only physically possible within a system that is heterogeneous and complex. The established facts at the command of the biologist provide a reason for him to concede that the first living form was of necessity an organized entity”.

This leads Grasse to stress the important fact that today’s bacteria, which appear to be the simplest living organisms, obviously attain a high degree of complexity. They are indeed composed of thousands of different molecules containing systems of catalysis that are themselves highly numerous, and which enable the bacteria to synthesize their own substance, to grow and to reproduce. The catalysis relies on enzymes, which act in infinitely small quantities, each enzyme performing its own specific function.

Like the amoeba, unicellular life forms are composed of differentiated elements. Their structure is amazingly complex, even though the cells are measured in units of 1 / 1,000 of a millimeter. Within the fundamental substance of unicellular forms, called cytoplasm, whose chemical structure is highly complex, there are numerous differentiated elements, the most important of which is the nucleus. This is composed of many parts, in particular the chromosomes containing the genes. These control every single aspect of the cell’s functioning. They give orders through a system of information transfer, using transmitters and a system to receive the orders as they come in. The chemical vehicle supporting the genes has been clearly identified:

It is deoxyribonucleic acid (D.N.A.), a molecule of complex structure. The `messenger’ is a related molecule known as ribonucleic acid, R.N.A for short. Within the cell, it is this system that ensures the formation of new proteins from simpler chemical elements (synthesis of proteins).

It is difficult not to feel tremendous admiration for the molecular biologists that first discovered these extremely complex mechanisms systems so perfectly regulated to maintain life that the slightest malfunction leads to deformities or monstrous growths (cancer is a case in point) and ends in death. As far as I am concerned, however, the brilliant analysis of the way this system works (for each and every cell is a kind of computer comprised of innumerable interrelations) is just as amazing as the general conclusions cited above concerning the supposed resolution of unexplained facts on the origins of life.

One very important question immediately springs to mind, based on the results of these investigations: How could ‘a system as complex as this have been formed? Was it the work of chance, following a host of trials and errors? That seems most unlikely. What other logical theories are there?

It is common knowledge that a computer will only function if it has been programmed, a fact that implies the existence of a programming intellect, that provides the information required to operate the system. That is the problem facing all thinking people who seek an explanation to such questions; people who refuse to accept mere words of groundless theories; people who will only acknowledge conclusions based on facts. Given the present state of knowledge, however, science has not provided any answer to this precise point.

The role of chance and necessity
Since the structure of living beings seems to have progressed in a perfectly coordinated way over the course of time, how is it that in this context people have paradoxically come to speak of chance? Is there really any need to stop and examine the theory that chance plays an active part? Certainly not: If we take account of the known facts of evolution. We must indeed examine the role of chance, however, in view of the fact that it has been fiercely defended by some and has attracted so much attention that the inaccuracy of the theory needs to be pointed out.

As for necessity, whim should here be understood to mean `the impossibility of the contrary, it is difficult to find any foundation for such an idea. In the explanation of the phenomena discussed here, the place occupied by necessity is, to say the least, extremely dubious. The philosophers of Antiquity, ignorant as they were of the realities of the universe, may be excused for conceiving (like Democritus) that eternal matter acted to produce all the cosmic systems and everything, in the universe, animate and inanimate forms alike.

While Democritus could not have had the faintest idea of cell structure, however, the same cannot be said of today’s scientists, especially when they are experts in molecular biology. What is one to think, therefore, when the role of chance is upheld by people who are aware of the immense complexity of living matter as a result of their own brilliant discoveries and analyses of it? Basic common sense tells us that the very last factor capable of explaining the existence of a highly complex organization is chance.

Even if we move our attention from the cell itself to its tiniest molecular elements, we shall see that physicists and chemists have long ago abandoned the theory that the cell was formed by chance: Indeed, in order for the smallest macromolecules of a cell to form as a result of repeated attempts, such enormous quantities of matter would have to have been processed that they would have filled literally colossal masses on a scale comparable to the volume of the earth itself. This is totally inconceivable.

Oparine, a modern Russian biologist who is a well known materialist, rejects outright the theory of chance in the formation of life: “The entire network of metabolic reactions is not only strictly coordinated, but also oriented toward the perpetual preservation and reproduction of the totality of conditions set by the external environment. This highly organized orientation characteristic of life cannot be the result of chance.” (From an article entitled `Etat actuel du probleme de l origine de la vie et ses perspectives’ (The Current State of the Problem of the Origin of Life and Its Future Perspectives), which appeared in the French journal `Biogenese’ (Biogenesis), Paris, 1967, p. 19.) In his work, The Origin of Life, Oparine draws particularly relevant comparisons to help the layman see the logicality of theories pointing toward chance. As he wrote in 1954:

“It is as if one jumbled together the printing blocks representing the twenty eight letters of the alphabet, in the hope that by chance they will fall into the pattern of a poem that we know. Only through knowledge and careful arrangement of the letter s and. words in a poem, however, can we produce the poem from the letters.”

There are of course certain theories that can be put forward, but some of them are quite obviously absurd. Oparine cites the following example in his book:

“Physicists state that it is theoretically possible for the table at which I am writing to rise by chance, due to the orientation in the same direction of the thermic movement of all its molecules. Nobody is likely, however, to take account of this in his experimental work or in his practical activity as a. whole.”

I owe these important quotations from Oparine to the highly documented book by Claude Tresmontant entitled Comment se pose aujourdhui le probleme de l’existence de Dieu (How Does the Problem of the Existence of God Appear Today?) (Published by Seuil, Paris 1971) they appear in Claude Tresmontant’s commentary on the theories of J. Monod published in Le Hasard et la Necessite (Chance and Necessity) (Published by Seuil, Paris 1970).

As early as 1967, J. Monod had stated in his inaugural speech at the College de France that `any and every fortuitous accident...’ in the reproduction of the genetic programme throughout evolution explained the creation of new structures:

“Evolution, the emergence of complex structures from simple forms, is therefore the result of the very imperfections in the system preserving the structures represented by the cell... It may be said that the same fortuitous events which, in an inanimate system, would accumulate to the point where all structures disappeared, lead, in the biosphere; to the creation of new and increasingly complex structures.”

Claude Tresmontant quotes another passage from J. Monod which appeared in a French journal entitled `Raison presente’ (Present Reason), no 5, 1968: “The only possible source of evolution has been in the fortuitous accidents that have occurred in the structure of D.N.A. They are what are known as `mutations’.”

It is difficult to understand why J. Monod therefore decided that chance alone was the intervening factor in this case. After all, he himself stressed his ignorance an ignorance we all share concerning the origins of genetic information:

“The major problem is the origin of the genetic code and the mechanism by which it is expressed. Indeed, one cannot talk so much of a `problem’ as of a genuine enigma.”

In fact, however, the enigma is twofold: It not only affects the origin of the genetic code, but also the increase in the data contained in the genes leading to the birth of more and more complex structures; an increase which, as we shall see later on, is expressed through chemical compounds.

The theory of chance as the force creating highly organized structures is at odds with the facts. We have already seen that evolution, in all its shapes and forms, takes place in an ordered fashion, complete with genuine lineages observing an orientation that is perfectly clear:

We cannot logically argue therefore, that `fortuitous accidents’ to use J. Monod’s phrase could have produced anything but chaos. We know in fact that within the same overall plan; concordant variations must combine over periods of time, which are often very long, in order for entirely new forms to appear. It is hardly surprising, therefore, that eminent zoologists such as P. P. Grasse, who are thoroughly familiar with the question, are incensed by explanations, which take no account of the real situation.

Among P. Grasse many critical comments, I shall quote the following observation concerning an aspect of the evolution of the mammals from the reptiles, an event that lasted some 50 million years:

“In the mammal, all the sensory organs evolved at more or less the same time. When we try to imagine just what their formation required in terms of simultaneous, or almost simultaneous mutations, all of them taking place at the right moment and capable of fulfilling the needs expected of them, we remain speechless at the sight of so much harmony, so many fortunate coincidences, all of them due to the unique and triumphant role of chance.” (L ’Evolution du vivant’ (The Evolution of Living Organisms))

In view of the fact that J. Monod received the Nobel Prize for Medicine, it behoves us to ask the following question: How is it possible for such an eminent scientist to put forward a theory such as this? The answer is quickly found: It lies in a doctrinal system that rests.

On a postulate that its author calls: “the postulate of the objectivity of nature... the systematic refusal to admit that any interpretation of phenomena cast in terms of a `final cause’ meaning plan can lead to a `true’ knowledge... While the organism observes the physical laws, it also surpasses them, thus devoting itself entirely to the pursuit and realization of its own plan...”

This means that henceforth only those factors that add new possibilities to the organism will be acceptable... We must also show our admiration for the “miraculous efficiency in the performances of living beings, ranging from bacteria to man...” The ideological ulterior motive is patently obvious: It consists in the refusal to accept the existence of any organisation in nature, and it leaves room only for individual `performances.’

In referring to the accidental alterations in the genes of living organisms and their influence on the evolution of .living beings, J. Monod employs terms that do not even allow us to think that his personal view might one day be subject to revision:

“We say that these alterations are accidental, that they take place by chance. Since they constitute the only source of possible modifications in the genetic code, which is itself the only repository of the organism’s hereditary structures, it must necessarily follow that chance, and only chance is the source of any new development or creation in the biosphere. Pure chance, and only chance freedom, blind but absolute the very root of the edifice we call evolution: This central concept of modern biology is no longer a mere hypothesis among other possible or conceivable hypotheses. It is the only conceivable hypothesis, the only one compatible with facts acquired through observation and experimentation. There is no reason to suppose (or to hope) that our concepts on this point should or even can be revised.”

In fact, however, the concept of 'pure chance', 'chance and only chance', 'freedom, blind but absolute the very root of... evolution' has received some hard knocks from P. Grasse in 'L’Evolution du vivant’ (The Evolution of Living Organisms), the eminent naturalist indicates that the problem of the transfer of information within the cell could be much more complex that J. Monod had foreseen when he stated that it was inconceivable henceforth to approach the problem from any angle other his (i.e. Monod’s) own point of view.

Let us first stress the fact that in the genes, as we shall see further on, D.N.A. (deoxyribonucleic acid) is the basic chemical material or vehicle for biological information. The information is transferred to the cellular cytoplasm by a different substance, R.N.A. (ribonucleic acid). In Monod’s theory, the transfer of information is always referred to in terms of a flow from the D.N.A. toward the R.N.A., and never in the reverse direction. In actual fact, however, the unexpected and the unforeseen can indeed occur.

The following is the objection presented in 'L ’Evolution du vivant’ (The Evolution of Living Organisms):

“The dogma of the immutability of D.N.A., which is always presented as the unique keeper and distributor of biological information destined to flow in one direction only, has been put forward by eminent biochemists (Watson, Crick, etc.) and geneticists (Jacob, Monod, etc.) Three years ago, in 1970, J. Monod made the following statement on the subject in ‘Le Hasard et la Necessite’ (Chance and Necessity), pp. 124 125: “It has never been observed, nor is it even conceivable, that information is ever transferred in the reverse direction...”

P. Grasse objection continues in the following terms: “The ink of these lines was hardly dry when the denial came, sharp and incontrovertible. The logic of living things, which, by the way, was the logic of the said biologist and not of nature, was totally overturned and the fine edifice deeply flawed.
“The discovery of enzymes able to use viral R.N.A. as a matrix for the synthesis of D.N.A. is regarded as a revolution in molecular biology.
“It is also considered”, writes P: P. Grasse in a footnote, “to be the most important discovery concerning the role of viruses in the formation of cancers. Several R.N.A. viruses create D.N.A. replicas that are carcinogenic.”

Further on, P: P. Grasse outlines the new contributions made by studies conducted before (1964), during (1970) and after (1971 and 1972) the publication of J. Monod’s work. P. P. Grasse then draws the following conclusion: “The studies outlined above show that a mechanism exists which, in certain circumstances, supplies information that comes from outside the organism and integrates it into the D.N.A. of the genetic code. For an evolutionist, this fact is of immense importance.”

The dogma of necessity put forward by J. Monod is a long way from explaining why the organisms the zoologists call .`stock forms’, which are the great ancestors of today’s types, have survived down to the present day and even live side by side with the modern forms descended from them. The same may be said of the unicellular organisms that still survive today, or even of older members of the living world; such as bacteria: How can their survival be explained?

In order to support his theory of the `miraculous efficiency in the performances of living beings’, J. Monod records in his book the following story (which is not based on any paleontologic data whatsoever) “The reason the tetrapod vertebrates appeared and were able to develop into the extraordinary range of animals that we know as the amphibians, the reptiles, the birds and the mammals, is that a primitive fish originally `chose’ to explore the dry land. There, however, it was only able to move about by leaping awkwardly. (‘Le Hasard et la Necessite’ (Chance and Necessity), pp. 142 143.”

P. Grasse concludes with the following remarks on the above statement:

“What makes us particularly unwilling to accept the story of the little fish the 'Magellan of evolution’ is the fact that the boleophthalmidae and periophthalmidae (mud skippers) perform this very `experiment’. They scuttle across the mud, climb the roots of mangrove trees, and raise themselves on their pectoral fins, just as if the fins were short limbs. They have lived in this way for millions of years, and although they never stop leaping about awkwardly or not their fins insist ow remaining as they are, rather than transforming themselves into limbs. These animals really are not very understanding.”



Related Articles: